Active site residues of cephalosporin acylase are critical not only for enzymatic catalysis but also for post-translational modification.

نویسندگان

  • S Kim
  • Y Kim
چکیده

Cephalosporin acylase (CA) is a recently identified N-terminal hydrolase. It is also a commercially important enzyme in producing 7-aminocephalosporanic acid (7-ACA), a backbone chemical in synthesizing semi-synthetic cephalosporin antibiotics. CA is translated as an inactive single chain precursor, being post-translationally modified into an active enzyme. The post-translational modification takes place in two steps. The first intramolecular autocatalytic proteolysis takes place at one end of the spacer peptide by a nucleophilic Ser or Thr, which in turn becomes a new N-terminal Ser or Thr. The second intermolecular modification cleaves off the other end of the spacer peptide by another CA. Two binary structures in complex with glutaryl-7-ACA (the most favored substrate of CAs) and glutarate (side chain of glutaryl-7-ACA) were determined, and they revealed the detailed interactions of glutaryl-7-ACA with the active site residues (Y. Kim and W. G. J. Hol (2001) Chem. Biol., in press). In this report: 1) we have mutated key active site residues into nonfunctional amino acids, and their roles in catalysis were further analyzed; 2) we performed mutagenesis studies indicating that secondary intermolecular modification is carried out in the same active site where deacylation reaction of CA occurs; and 3) the cleavage site of secondary intermolecular modification by another CA was identified in the spacer peptide using mutational analysis. Finally, a schematic model for intermolecular cleavage of CA is proposed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Human Thioredoxin System: Modifications and Clinical Applications

The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...

متن کامل

Modeling and Experimental Analysis of Cephalosporin C Acylase and Its Mutant

7-amino cephalosporanic acid (7-ACA) is the crucial intermediate for the synthesis of semi-synthetic antibiotics, which is currently prepared by two-step biocatalysis using D-amino acid oxidase and glutaryl-7-amino cephalosporanic acid acylase (GL-7-ACA acylase) starting from cephalosporin C (CPC). Compared with the two-step enzymatic method, one-step method is more efficient and economical. Bu...

متن کامل

Structure of a class III engineered cephalosporin acylase: comparisons with class I acylase and implications for differences in substrate specificity and catalytic activity.

The crystal structure of the wild-type form of glutaryl-7-ACA (7-aminocephalosporanic acid) acylase from Pseudomonas N176 and a double mutant of the protein (H57βS/H70βS) that displays enhanced catalytic efficiency on cephalosporin C over glutaryl-7-aminocephalosporanic acid has been determined. The structures show a heterodimer made up of an α-chain (229 residues) and a β-chain (543 residues) ...

متن کامل

A Fundamental Modulator of Vascular Function

Enzymes are critical components of every cell, and their activity is tightly regulated by substrate availability, competitive or allosteric inhibitors, and the presence of cofactors. Enzymatic activity may also be modulated by posttranslational modifications, such as cleavage of the polypeptide chain or phosphorylation/dephosphorylation of amino acid residues. Under pathological conditions, oth...

متن کامل

Anaerobic sulfatase-maturating enzymes, first dual substrate radical S-adenosylmethionine enzymes.

Sulfatases are a major group of enzymes involved in many critical physiological processes as reflected by their broad distribution in all three domains of life. This class of hydrolases is unique in requiring an essential post-translational modification of a critical active-site cysteine or serine residue to C(alpha)-formylglycine. This modification is catalyzed by at least three nonhomologous ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 276 51  شماره 

صفحات  -

تاریخ انتشار 2001